VisoMaster Tutorial: How To Install VisoMaster From Source Code? (Also windows package)

Silicon Gamer

06/06/2025

updated 08/06/2025

VisoMaster

1. What is VisoMaster?

VisoMaster is a powerful yet easy-to-use tool for face swapping and editing in images and videos. It utilizes AI to produce natural-looking results with minimal effort, making it ideal for both casual users and professionals.

​Its core functionality is similar to DeepFaceLab – essentially “face swapping.”​​ After testing and experimenting with several videos on my local computer, ​VisoMaster proves significantly more efficient and user-friendly.​​ Surprisingly, it even produces superior results in many cases.

​Unlike DeepFaceLab, which demands extensive preparation of source images, I found VisoMaster delivers exceptional results ​with just a single source image. If you’re a seasoned DeepFaceLab gamer, ​I strongly encourage you to give VisoMaster a try—it’s a game-changer.​

Based on this, I’ve created this tutorial to share with everyone.

2. Installation Steps (via Source Code)

 

2.1 Clone the Repository

 

Open a terminal or command prompt and run:

git clone https://github.com/visomaster/VisoMaster.git
cd VisoMaster

2.2 Create and Activate a Conda Environment

 

conda create -n visomaster python=3.10.13 -y
conda activate visomaster
done
#
# To activate this environment, use
#
# $ conda activate env_visomaster
#
# To deactivate an active environment, use
#
# $ conda deactivate

2.3 Install CUDA and cuDNN

 

conda install -c nvidia/label/cuda-12.4.1 cuda-runtime
conda install -c conda-forge cudnn
(env_visomaster) C:\Users\Jin>conda install -c nvidia/label/cuda-12.4.1 cuda-runtime
Channels:
- nvidia/label/cuda-12.4.1
- defaults
- conda-forge
Platform: win-64
Collecting package metadata (repodata.json): done
Solving environment: done

## Package Plan ##

environment location: C:\Workstation\Environment\envs\env_visomaster

added / updated specs:
- cuda-runtime


The following packages will be downloaded:

package | build
---------------------------|-----------------
cuda-cudart-12.4.127 | 0 1004 KB nvidia/label/cuda-12.4.1
cuda-libraries-12.4.1 | 0 2 KB nvidia/label/cuda-12.4.1
cuda-nvrtc-12.4.127 | 0 78.0 MB nvidia/label/cuda-12.4.1
cuda-opencl-12.4.127 | 0 11 KB nvidia/label/cuda-12.4.1
cuda-runtime-12.4.1 | 0 2 KB nvidia/label/cuda-12.4.1
libcublas-12.4.5.8 | 0 34 KB nvidia/label/cuda-12.4.1
libcufft-11.2.1.3 | 0 6 KB nvidia/label/cuda-12.4.1
libcurand-10.3.5.147 | 0 4 KB nvidia/label/cuda-12.4.1
libcusolver-11.6.1.9 | 0 29 KB nvidia/label/cuda-12.4.1
libcusparse-12.3.1.170 | 0 13 KB nvidia/label/cuda-12.4.1
libnpp-12.2.5.30 | 0 310 KB nvidia/label/cuda-12.4.1
libnvfatbin-12.4.127 | 0 1.1 MB nvidia/label/cuda-12.4.1
libnvjitlink-12.4.127 | 0 71.8 MB nvidia/label/cuda-12.4.1
libnvjpeg-12.3.1.117 | 0 5 KB nvidia/label/cuda-12.4.1
------------------------------------------------------------
Total: 152.3 MB

The following NEW packages will be INSTALLED:

cuda-cudart nvidia/label/cuda-12.4.1/win-64::cuda-cudart-12.4.127-0
cuda-libraries nvidia/label/cuda-12.4.1/win-64::cuda-libraries-12.4.1-0
cuda-nvrtc nvidia/label/cuda-12.4.1/win-64::cuda-nvrtc-12.4.127-0
cuda-opencl nvidia/label/cuda-12.4.1/win-64::cuda-opencl-12.4.127-0
cuda-runtime nvidia/label/cuda-12.4.1/win-64::cuda-runtime-12.4.1-0
libcublas nvidia/label/cuda-12.4.1/win-64::libcublas-12.4.5.8-0
libcufft nvidia/label/cuda-12.4.1/win-64::libcufft-11.2.1.3-0
libcurand nvidia/label/cuda-12.4.1/win-64::libcurand-10.3.5.147-0
libcusolver nvidia/label/cuda-12.4.1/win-64::libcusolver-11.6.1.9-0
libcusparse nvidia/label/cuda-12.4.1/win-64::libcusparse-12.3.1.170-0
libnpp nvidia/label/cuda-12.4.1/win-64::libnpp-12.2.5.30-0
libnvfatbin nvidia/label/cuda-12.4.1/win-64::libnvfatbin-12.4.127-0
libnvjitlink nvidia/label/cuda-12.4.1/win-64::libnvjitlink-12.4.127-0
libnvjpeg nvidia/label/cuda-12.4.1/win-64::libnvjpeg-12.3.1.117-0


Proceed ([y]/n)? y


Downloading and Extracting Packages:

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(env_visomaster) C:\Users\Jin>conda install -c conda-forge cudnn
Channels:
- conda-forge
- defaults
- nvidia/label/cuda-12.4.1
Platform: win-64
Collecting package metadata (repodata.json): done
Solving environment: done

## Package Plan ##

environment location: C:\Workstation\Environment\envs\env_visomaster

added / updated specs:
- cudnn


The following packages will be downloaded:

package | build
---------------------------|-----------------
cuda-version-12.9 | h4f385c5_3 21 KB conda-forge
cudnn-9.10.1.4 | h1361d0a_0 19 KB conda-forge
libcudnn-9.10.1.4 | hffc9a7f_0 486.2 MB conda-forge
libcudnn-dev-9.10.1.4 | hffc9a7f_0 151 KB conda-forge
vc14_runtime-14.42.34438 | hfd919c2_26 733 KB conda-forge
vs2015_runtime-14.42.34438 | h7142326_26 17 KB conda-forge
------------------------------------------------------------
Total: 487.1 MB

The following NEW packages will be INSTALLED:

cuda-version conda-forge/noarch::cuda-version-12.9-h4f385c5_3
cudnn conda-forge/win-64::cudnn-9.10.1.4-h1361d0a_0
libcudnn conda-forge/win-64::libcudnn-9.10.1.4-hffc9a7f_0
libcudnn-dev conda-forge/win-64::libcudnn-dev-9.10.1.4-hffc9a7f_0
ucrt conda-forge/win-64::ucrt-10.0.22621.0-h57928b3_1
vc14_runtime conda-forge/win-64::vc14_runtime-14.42.34438-hfd919c2_26

The following packages will be UPDATED:

ca-certificates anaconda/pkgs/main/win-64::ca-certifi~ --> conda-forge/noarch::ca-certificates-2025.4.26-h4c7d964_0
openssl anaconda/pkgs/main::openssl-3.0.16-h3~ --> conda-forge::openssl-3.5.0-ha4e3fda_1
vs2015_runtime anaconda/pkgs/main::vs2015_runtime-14~ --> conda-forge::vs2015_runtime-14.42.34438-h7142326_26


Proceed ([y]/n)? y


Downloading and Extracting Packages:

Preparing transaction: done
Verifying transaction: done
Executing transaction: done

2.4 Install Additional Dependencies

 

conda install scikit-image
pip install -r requirements_cu124.txt

2.5 Download Models and Other Dependencies

  1. Download all the required models
python download_models.py

it will download files into model_assets directory,i checked size,about 11.4GB.

I’ve checked the total folder size—it shows ​11.4 GB. In most cases, ​the download process is straightforward. However, if you encounter network issues while using a VPN or run into other errors, feel free to  email​  me​ or ​leave a comment below. I’ll package the files and send them to you directly.
C:\Workstation\Python\AI\VisoMaster
├.github
├.gitignore
├.thumbnails
├app
├dependencies
├download_models.py
├LICENSE
├main.py
├model_assets
├README.md
├requirements_cu118.txt
├requirements_cu124.txt
├scripts
├Start.bat
├Start_Portable.bat
├tools
├Update_Portable.bat

Note: You do not need to download the Source code (zip) and Source code (tar.gz) files

2.6 Run the Application

Once everything is set up, start the application by run python main.py.

3. Installation via exe file

https://github.com/visomaster/VisoMaster/releases/download/v0.1.1/VisoMaster_Setup.exe

I strongly prefer installing from source code because it allows me to run the application in an isolated Python environment where I can tinker freely without consequences.

As for the second installation method, my concern is that it might automatically use the global base environment. This could force upgrades or downgrades of packages in the base environment, leading to version conflicts. I’ve experienced similar environment issues before with ComfyUI installation packages.

 

4. final evaluation

I remain convinced that DeepFaceLab holds the higher ceiling — it demands 200% effort to produce a truly refined 90/100 result.​​ ​Yet VisoMaster? With just 10% of the effort, it reliably delivers solid 60–80/100 outcomes.

 

Leave a Comment